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Improved Tuning Prediction for the Microstrip Coupled
Dielectric Resonator Using Distributed Coupling

Xiaoming Xu and Robin Sloan

Abstract—In this paper, accurate modeling of the varactor-tuned dielec-
tric resonator (DR) using distributed coupling between the DR and mi-
crostrip lines is investigated on the basis of three-dimensional electromag-
netic study. The magnetic coupling between the DR and microstrip line is
appreciable over a length greater than the diameter of the DR. The distri-
bution of this coupling should be considered when calculating the electronic
frequency tuning range. A novel circuit model is introduced to represent the
coupling as distributed, with an integral method to calculate equivalent-cir-
cuit parameters efficiently. The distributed model provides much better ac-
curacy than the conventional lumped model [1]–[3]. A comparison is made
between the calculated tuning range of 23 MHz achieved by the distributed
model, which agrees closely with a measurement of 20.2 MHz, and that of
89 MHz predicted by the conventional lumped model. The circuit model of
distributed coupling is, therefore, valuable in the design of DR oscillators.

Index Terms—Dielectric resonator, distributed coupling, tuning range,
varactor tuning.

I. INTRODUCTION

Dielectric resonators (DRs) are commonly used as stabilization el-
ements in oscillators [4]. The high quality factors realizable with the
DR yield a relatively low oscillator phase noise. The most common os-
cillator configuration is the reflection mode with the DR located off a
microstrip line attached to the active device. The electromagnetic (EM)
mode employed, most commonly theTE01� mode, may be tuned elec-
tronically using a varactor diode mounted on an adjacent transmission
line, as shown in Fig. 1. Usually, the desired oscillation frequency is
maintained by electronically compensating for temperature drift, but
could also be required to maintain phase lock to a reference oscillation.
In their paper [3], Buer and El-Sharawy discussed the importance of
using a nonresonant varactor tuning line and applied the lumped equiv-
alent circuit. Resonance in the varactor tuning line should be avoided or
else spurious oscillations and undesirable frequency hopping can occur.
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Fig. 1. DR in cavity, with microstrip lines and varactor.

Modeling the DR circuit traditionally relies upon deriving a lumped
equivalent circuit based upon curve fitting the response to either
directly measured or electromagnetically simulatedS-parameters
[1]–[3]. In this paper, a more accurate alternative model is expounded,
which is capable of accurately predicting the achievable tuning range.
Compared with the classic lumped equivalent circuit, the distribution
of coupling between a DR and a microstrip line is modeled by the
mutual inductance of multiple sections. Parameters of the equivalent
model are derived through the integration of the appropriate EM-field
component and, thus, the model is truly representative of the actual
EM fields. Komatsu and Murakami [5] have also calculated the
coupling to the DR based on EM-field distribution. However, the
magnetic field is then integrated along the microstrip line to yield an
overall lumped coupling. For the results presented here, the EM-field
distribution is generated for a single frequency point corresponding
to peak energy storage at theTE01�-mode resonance eigenfrequency.
This is computationally efficient, requiring only a single simulation
with corresponding post-processing to yield the equivalent distributed
circuit components. These components are then applied to a nodal
simulation package such as HP EEsof’s Libra, thus yielding theS-pa-
rameter response rapidly. It is then far quicker to optimize parameters
of this equivalent circuit than the dimensions of the three-dimensional
EM model. The approach is general enough to be applied to any DR
coupled circuit comprising one or more transmission lines.

II. DISTRIBUTION OF COUPLING AND CIRCUIT MODEL

Conventional circuit models for a DR coupling to a microstrip line
are based on the assumption that the coupling between the DR and mi-
crostrip line is concentrated at the middle of the line. A three-dimen-
sional field study reveals that the coupling component of the magnetic
field spreads widely along the line as described in [1].

Using nodal analysis software, such as Libra, mutual inductances
are used to represent the distribution of magnetic coupling between the
DR and microstrip lines. The microstrip lines are divided into short
sections of 0.5 mm (�=27). The total inductance of the DR, i.e.,Lr ,
is distributed on the secondary side of the inductors. For convenience,
an additional inductance, i.e.,La, is introduced to take account of the
remainder as follows:

Lr = Lt + La (1)

whereLt is the microstrip inductance in each section.
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III. D ERIVATION OF CIRCUIT PARAMETERS

There is an existing approach of extracting equivalent-circuit param-
eters from results of EM field calculation by a curve-fitting technique.
Firstly, a number of EM calculations are carried out around the reso-
nant frequency with small frequency steps. AnS-parameter curve with
respect to frequency is obtained. Then parameters of circuit model are
curve fitted to the frequency response. This approach possesses little
relation between the nature of actual EM fields and corresponding cir-
cuit models.

Initially, a single eigenvalue calculation of the three-dimensional EM
structure is carried out to find the resonant frequency of the mode under
consideration, (here, it is theTE01� mode) and the corresponding field
distribution. A number of physical quantities, such as stored energyW ,
lossesPloss, magnetic flux�m, and electric flux�d, are then calculated
by volume and surface integrations of the EM fields at the resonant fre-
quencyfr . As is well known, the energy is stored in electric and mag-
netic fields in the whole space,W = We + Wm. At resonance, the
electric energyWe and magnetic energyWm are equal to each other,
We = Wm, but in any numerical calculation, one of them usually has
better accuracy. Since SOPRANO uses electric fieldE as the solved
variable, the electric field has better accuracy, while the magnetic field
is derived from the electric field by numerical differentiation. Therefore,
the total stored energy is expressed by a volume integral as follows:

W =We +Wm = 2We =
v

E �Ddv: (2)

Both surface and volume integrals are employed to take account of
losses on metal walls of the cavity and in the materials as follows:

Plosses = Rs

s

H2

t ds+
v

�lE
2 dv: (3)

The surface resistivity of the metal walls is calculated as
Rs = (�f�)=�c, where �c is volume conductivity of the
metal. The tangential component of the magnetic field isHt = H � t̂

and the equivalent conductivity of the materials, such as substrate and
DR puck, due to losses is calculated as�l = 2�f"r"0 tan � where
tan � is the loss tangent.

For magnetic flux�m, representing coupling between the DR and
a microstrip line, the integration surface of (4) is vertical and directly
under the middle of the metal microstrip track and is entirely in the
substrate as follows:

�m =
s

B � ds: (4)

The approach adopted here assumes that only the magnetic coupling
is significant.

Besides the physical quantities explained above, the electric flux�d

is chosen as the state variable for the magnitude of resonance. A vertical
cut plane from the center of the DR puck to the wall of cavity is set up
to carry out the surface integration for the flux as follows:

�d =
s

D � ds: (5)

Furthermore, the corresponding state variable of the equivalent-cir-
cuit electric-currentI is calculated as follows:

I = 2�fr�d: (6)

Finally, equivalent-circuit parameters are derived from the physical
quantities as follows:

Wm =
1

2
LrI

2

Wm =
1

2
W =) Lr =W=I2 (7)

Fig. 2. Frequency response ofS from distributed models.

fr =
1

2�
p
LrCr

=) Cr =
1

(2�fr)2Lr

(8)

�m =MI =) M = �m=I (9)

Ploss =RrI
2 =) Rr = Ploss=I

2 (10)

whereLr,Cr, andRr are total inductance, total capacitance, and total
resistance of the DR, respectively, andM is the mutual inductance due
to the magnetic coupling between the DR and microstrip line. For the
lumped coupling model,M is the total mutual inductance, therefore,
�m should correspond to the total flux on the whole length of the line.
In the distributed coupling model,M is the mutual inductance repre-
senting coupling between the DR and a section of the line, and the cor-
responding�m should be calculated along the length of the section.

IV. COMPARISON OFCALCULATED RESULTS WITHMEASUREMENT

A testing circuit was made to verify the new modeling method, at
a design frequency of 9.6 GHz. A microstrip line of 10-mil width is
fabricated on 10-mil substrate with"r = 9. The circuit and DR puck
(Morgan Electroceramics, Ruabon, U.K., D36 puck, Zr, Sn–titanate
composite,d = 6:7 mm, h = 2:5 mm, and"r = 36:5) operating
in theTE01� mode are hosted by a 19� 18� 8 mm3 brass cavity. A
varactor diode (LORAL, GC15006, 0.2–2.0 pF) was bonded at one end
of a 10-mil microstrip line of 340-mil total length.

To search for the resonant frequency of theTE01� mode, an
eigenvalue calculation of the loaded cavity was carried out by SO-
PRANO/EV. The equivalent-circuit parameters were then calculated
from the field distribution as: inductance of the DRLr = 1:470635
nH, capacitance of the DRCr = 0:1874298 pF, resistance
representing all lossesRr = 0:020602 
, mutual inductance
representing coupling between the DR and the primary microstrip line
M1 = 0:1001760 nH, and finally, mutual inductance for coupling to
the tuning microstrip lineM2 = 0:08093640 nH. After delivering the
parameters to the lumped- and distributed-circuit models, the tuning
ranges were calculated for each model using HP EEsof’s Libra.

The frequency response of the reflection coefficientS11 from the
distributed model is shown in Fig. 2. Examining the tuning range of
the distributed model versus the lumped model and measurement in
Fig. 3 shows that the distributed model provides a much better result,
a tuning range of 23 MHz compared with 20 MHz from measurement,
while the lumped model gives a very wide range of 89 MHz. The error
between the calculated and measured resonant frequency is attributed
to the tolerance in the DR permittivity ("r = 36:5� 0:5).
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Fig. 3. Tuning range.

V. CONCLUSION AND FURTHER DISCUSSION

The distribution of the coupling between a DR operating in the
TE01� mode and microstrip lines has been studied in this paper. Using
a finite-element field calculation at the resonant frequency, equivalent
multisection circuit parameters were derived. The distributed- and
lumped-coupling models are compared with measured results from
a test circuit. The distributed model with a predicted tuning range of
23 MHz is in close agreement with the measured range of 20 MHz.
The advantage of the distributed model is clear when the range from
the lumped model is considered at 89 MHz.
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Rapidly Converging Direct Singular Integral-Equation
Techniques in the Analysis of Open Microstrip Lines

on Layered Substrates

J. L. Tsalamengas

Abstract—In this paper, moment-method-oriented direct singular inte-
gral-equation techniques are used for the exact analysis of planar layered
microstrip lines. While these techniques retain the simplicity of the conven-
tional method of moments, they optimize them by evaluating all matrix ele-
ments via rapidly converging real-axis spectral integrals. The proposed al-
gorithms yield highly accurate results for the dispersion characteristics and
for the modal currents both of the fundamental and higher order modes.

Index Terms—Integral equations, layered media, planar transmission
lines.

I. INTRODUCTION

Shown in Fig. 1 is the geometry of an open generalized microstrip
line. All layers—described by the scalars("i; �i; ki = !

p
"i�i)—are

taken to be linear, homogeneous, and isotropic, whereas the semi-in-
finite regionsm + 1 and�n � 1 may be perfect electric conductors
(PECs), perfect magnetic conductors (PMCs), or dielectrics. Here, the
worst case is considered, where the strip is placed at(y = 0; �w �
x � w; �1 < z < +1) right on the interface between two adjacent
layers. It is known [1], [2] that, in this (worst) case, several exponen-
tially decaying factors, which ensure convergence of the conventional
spectral Green’s dyads, disappear, leaving us with slowly converging
spectral integrals. Proper handling of these integrals will be carried out
most efficiently in Section III.

In connection with this structure, the three-dimensional (3-D) ex-
citation problem for an arbitrarily polarized obliquely incident plane
wave has been treated in [3]. Here, we solve the spectral (propaga-
tion) problem. Since the analysis is the same for both problems, only a
brief outline will be given here, referring to [3] for details. The corre-
sponding generalized microslot-line problem has been recently treated
in [4] along parallel lines.

The analysis begins with the system of integral equations (rather in-
convenient) derived in the context of conventional method of moments
(MoM) by the immittance approach. The next crucial step is to recast
this system into a 2� 2 system of first-kind singular integral/integrod-
ifferential equations (SIE/SIDE). Most advantageously, the new ker-
nels consist of: 1) several closed-form (Hankel) singular terms and 2)
rapidly converging real-axis spectral integrals. With the help of some
basic algorithms developed in [5], the solution of the final SIE/SIDE
leads to matrix elements, the representations of which converge very
rapidly.

II. A NALYSIS

Assuming propagation in the�z-direction and following the immit-
tance approach, the surface current density on the stripJ = [Jx(x)x̂+
Jz(x)ẑ]e

j(!t+�z) is found to satisfy the system of integral equations

<(Z1; Z2; x) = 0 <(Z2; Z3; x) = 0 (jxj � w) (1)
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